TAIDOB COLLEGE

PRE-WASSCE PREPARATORY ASSESSMENT

CHEMISTRY

1a. Draw the diagram of a typical electrolytic cell.
b. What is an electrolyte?

2a. In a tabular form, give two (2) differences between a conductor and an electrolyte.
b. Acidified water was electrolysed using platinum electrodes.
i. Write out the reaction that occurs at the:
I. anode
II. cathode.
ii. What product is obtained at the:
I. anode?
II. cathode?
c. Concentrated calcium chloride $\left(\mathrm{CaCl}_{2}\right)$ was electrolysed using graphite electrodes. Give the products that will be obtained at the:
I. anode
II. cathode.
3. What current in amperes will deposit 10.5 g of aluminum in 1hour? $(\mathrm{Al}=27,1$ Faraday $=96500 \mathrm{C})$

4a. What are nucleons?
b. State Graham's law of diffusion.
c. Explain briefly why aluminum does not corrode easily.

5a. Give one example of each for the following compounds
i. an amphoteric oxide:
ii. a hydride which evolves hydrogen when reacted with water.
iii. a trioxocarbonate (IV) salt which is readily decomposed on heating.
iv. a chloride salt which is readily hydrolyzed in water.
b. State two (2) differences between metals and non-metals with respect to their physical properties.

6a. Calculate the amount of hydrochloric acid in $50 \mathrm{~cm}^{3}$ of 0.3 $\mathrm{mol} / \mathrm{dm}^{3}$.
bi. Describe briefly the industrial preparation of ammonia.
ii. Write a balanced equation for the reaction in 3 (b) (i) above.
iii. State two (2) uses of ammonia.
7. What volume of oxygen measured at s.t.p would be liberated by passing a current of 25 A , through acidified water for 900 seconds? (Molar volume of a gas $=22.4 \mathrm{dm}^{3}$ at s.t.p., 1 Faraday $=96$ 500C)

8a. Determine the oxidation number of iodine in IO_{3}^{-}.
b. State:
i. two physical properties and
ii. two chemical properties of chlorine.

9a. Mention one (1) example of a chloride that is:
i. Insoluble in water
ii. Soluble in water.
b. Briefly explain the laboratory preparation of chlorine.
10. A is a solution containing 0.98 g in $500 \mathrm{~cm}^{3}$ of solution $\mathrm{H}_{2} \mathrm{SO}_{4}$. B is a solution of NaOH . Put in to the burette and titrate against 20 or $25 \mathrm{~cm}^{3}$ portion of \mathbf{B} using two or three drops of methyl orange as indicator. Record the volume of the pipette. Complete the table of burette readings and calculate the average volume of \mathbf{A} used.

Burette Reading $\left(\mathrm{cm}^{3}\right)$	1 st Titre	2nd Titre	3rd Titre
Final reading $\left(\mathrm{cm}^{3}\right)$	24.80	28.90	25.40
Initial reading $\left(\mathrm{cm}^{3}\right)$	0.00	4.00	0.00
Volume of acid used $\left(\mathrm{cm}^{3}\right)$			

The equation of reaction used:
$\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{NaOH}_{(\mathrm{aq})}$
$\mathrm{Na}_{2} \mathrm{SO}_{4(\text { aq })}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}$
From your results and the information provided, calculate
i. Concentration of A in g / dm^{3}
ii. Concentration of solution A in $\mathrm{mol} / \mathrm{dm}^{3}$
iii. Concentration of solution B in $\mathrm{mol} / \mathrm{dm}^{3}$
iv. Concentration of solution B in g / dm^{3}.
v. Amount in (mol) and mass in (gram) of $\mathrm{H}_{2} \mathrm{SO}_{4}$ present in solution A used.
vi. Amount in (mol) and mass in (gram) of $\mathrm{H}_{2} \mathrm{SO}_{4}$ present in $200 \mathrm{~cm}^{3}$ of solution A.
vii. Amount in (mol) and mass in (gram) of NaOH present in solution B used.
viii. Amount in (mol) and mass in (gram) of NaOH present in $1 \mathrm{dm}^{3}$ of solution B.

